YSSC2P-A

SSCNET-II PCI Interface Adapter

User manual

YSSC2P-A User manual | Version 1.0

Contents

Contents
Introduction

Specifications

Board layout
D1 — servo amplifier status

DS — error

D6 — controller status

CN1 — digital inputs

CN2 — expansion

CN3 — digital outputs

CN4 — SSCNET

J1 — CN2 power

J3 — weak pull ups/downs

J2 — JTAG
Connections

Digital inputs

Expansion

Digital outputs
Theory of operation

LinuxCNC driver module
SSCll
Servo
Encoder
GPIO
Absolute encoder support
Firmware upgrade
Installation
Disclaimer

Copyright © 2016, dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

YSSC2P-A User manual | Version 1.0

Introduction

YSSC2P-A is a PCl interface controller compatible with Mitsubishi MR-J2S-B SSCNET Il network servo amplifiers. It
support up up to six MR-J2S-B drives in position and velocity control mode. The controller also features general-purpose
I/0 headers for connecting to limit switches and relays. The software includes LinuxCNC 2.7.4 driver module and an
optional patch for absolute encoder support.

There'’s an early experimental firmware version with can be used with MACH3 software without any additional software
plugins or drivers via bidirectional parallel port emulation.

SSCNET is a synchronous high-speed network for servo drives and motion controllers. SSCNET only requires a simple
daisy chain wiring between servo amplifiers. See Mitsubishi documentation for details.

Copyright © 2016, dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

PCI 32bit, 33MHz, 5V or 3.3V

Xilinx Spartan-6 FPGA

Compatible servo amplifiers: MR-J2S-*B

SSCNET Il - 5.6 Mbit/s, RS-485 signalling, controls 1 to 6 servo amplifiers
0.88ms cycle, position or velocity control

12 optoisolated digital inputs, 24VDC

8 open collector outputs, up to 30VDC, 100mA each

Expansion connector — 17 bidirectional 5V tolerant I/O lines to the FPGA
LinuxCNC driver

Low profile PCI board, 120 mm x 80 mm

Board layout

The controller board layout showing connectors and indication LEDs:

—
[‘EDW L cNA ‘ L cNa2 | qu LWI

1 [

YSSCarP-A

119.9 MM

LEDs

D1 servo amplifier status
D5 FPGA boot error

D6 controller status
Connectors

CN1 digital inputs

CN2 expansion connector
CN3 digital outputs

CN4 SSCNET connector
J2 JTAG connector

Jumpers

J1 +5V power on CN2
J3 pull-up/pull-down resistor at CN2

dmitry@yurtaev.com

B4.4mm

mailto:dmitry@yurtaev.com

D1 - servo amplifier status

green continuous servo amplifiers initialized
green ~2 Hz SERVO-ON
red ~2 Hz servo amplifier alarm
green >5 Hz firmware FLASH monitor (nyxflash)
D5 - error

red continuous FPGA boot error
D6 — controller status

amber continuous FPGA boot error
amber ~4's controller stand-by
amber ~2 Hz controller is synchronized with LinuxCNC

CN1 — digital inputs

1 INO 2 IN1

3 IN2 4 IN3

5 IN4 6 INS

7 ING 8 IN7

9 IN8 10 [IN9

11 |IN10 12 |IN11

13 | COM - +24V input 14 | COM - +24V input

CN2 - expansion

1 100 2 101

3 102 4 103

5 104 6 105

7 106 8 107

9 108 10 |GND

11 109 12 |GND

13 [1010 14 |GND

15 |1011/A 16 |GND

17 |1012/B 18 |GND or +5V
19 |1013/Z 20 |GND or +5V
21 |1014 22 | GND or +5V
23 |1015/RXD 24 | GND or +5V
25 |1016/TXD 26 | GND or +5Vv*

* depends on J1 position, up to 500mA (fused)

dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

CN3 - digital outputs

1 OouTo 2 OUT1
3 OouT2 4 OuT3
5 OouT4 6 OuUT5
7 OouT6 8 ouT7
9 COM - +24V input 10 GND
CN4 — SSCNET

1 LG 11 LG

2 RD 12 RD*
3 TD 13 TD*

4 LG 14 LG

5 15

6 16

7 EMG 17 EMG*
8 18

9 19

10 20

J1 - CN2 power

1-2 [CN2 pins 18, 20, 22, 24, 26 connected to ground

2-3 | —//— to +5V*

* +5V is sourced from PCI connector via 500mA self-resettable fuse

J3 — weak pull ups/downs

1-2 | CN2 pins 1-9, 11, 13, 15, 17, 19, 21, 23, 25 pulled up to +5V*

2-3 |—//— pulled down to GND*

* via 4.7k resistors

J2 - JTAG

1 TCK 2 GND

3 TDI 4 TDO

5 T™MS 6 VCC 3.3V

dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

Digital inputs

CN1 contains 12 optoisolated digital inputs. External
24VDC field power supply is required for operation.
Example connection of open-collector outputs or
mechanical switches is shown on schematics. When
using non-contact proximity sensors choose NPN output
type.

Digital outputs
CNB3 has 8 open-collector outputs from ULN2803A IC. Itis

capable of 100 mA/30V. Total current should not exceed 500mA.
Pin 9 connects to positive terminal of the field power supply for
flyback protection diodes when using inductive load such as

magnetic relays.

YSSC2P-A

dmitry@yurtaev.com

>
+ 4
= 24vVDC }
| 70" w4
AN 470 gZ/K
1-12 5.6K |
O/C OUT —|>§
0 o | S
»—o/._‘> 470 }/K:_D
SWITCH 1-12 55K
CN2
wsvoc P 18202224 26 R
' x
<
= O
= —/w»—l e g
g -
% 47K Q
T <> - g
_NWJ 100-16 >
J3 H— W E
’ X
) i
YSSC2P-A 10121416
RELAY
CN3 _REY
(]
=y —{H
I_M_ 1-8
: LIGHT
Mlna==mdl
: o1 =
8
|+
o ol e :
10 I
24V DC
YSSC2P-A = oo

Encoders, analog 1/0, RS-485 etc,

mailto:dmitry@yurtaev.com

The controller is implemented in a Xilinx Spartan-6 FPGA. It includes a PCI controller core and a system-on-a-chip with a
soft-core CPU. The CPU executes a firmware which handles communication with servo drives and 1/O processing. The
communication with the host computer is handled via a dual-ported RAM and interrupts.

A hI:ﬁl:fAF{il—r:q Expansion module

A NN
NS N/

N
T

= — Expansion: — Output
3 < = sP GPIO, oPo > drivers
& = [encoder, [

=

o

o

LIART atc.
Opto-
<:> DF RAM GPI < et
Bus
tranciever

IR CPU

SSCNET

Al

NS
PCl target
{}

FPGA

<

The software executes an endless loop with a 0.88ms period. Below is a timing diagram of a cycle:

.

< trans mit P 2
u — ——,
E [I,—-" . Y %
L I Y Lsamc &
f_} command, axes #1-6, tick 1 ﬁ' \\"!'. | ﬁ command, axes #1-6, tick 2
| |
{ =
feedback #1 feedback #5 | |I feedback #1
tick O tick O |I _— tick 1 't
) read DPRAM, |)
H ’7 prepare command . ﬂ
>

N | / 7/ N

i
|)
tart g | / I| /III / ! II“1 N tart d
slart comman f S | \ W start comman
tranzmit, tick 1 I' [E— L, b — e A e transmit, tick 2
DMA fro |

|
- copy feadhack m write to
| L | #6toDPRAM DPRAM process DPRAM

copy feedback
#1 to DPRAM

& fransmit T < receive | controller | | LinuxCHC |

The controller cycle begins with a timer interrupt which starts a transmission of a SSCNET control frame. In response
servo amplifiers transmit a feedback frames in sequence defined by their IDs. The controller receives, processes and
writes it to the exchange buffer in the DPRAM. After all feedback received the controller waits for a sync interrupt from
the host driver. Measuring the timing of the interrupt the controller slightly adjusts its 0.88 timer so that to be in sync with
the servo thread of the LinuxCNC.

On each servo thread cycle LinuxCNC calls driver function. At the beginning of execution the drivers generates a sync
interrupt to the controller processor. Following that the driver starts the DMA engine to copy feedback data from the
dual-port buffer RAM to system RAM with a PCI burst transfer. Received data is used to update HAL output pins of the
driver. Then driver HAL input pins are read and values used to compose a command packet for the next cycle which is
written to the dual-port RAM buffer.

Then the controller processor receives second timer interrupt on which it reads command packet from DPRAM buffer,
and prepares a SSCNET control frame using the data received from the host driver. The cycle repeats.

dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

LinuxCNC HAL driver module name is sscii. During operation the controller and SSCNET network are synchronized to
servo thread of the LinuxCNC. Therefore servo thread period should be set to 888888 ns - the period of SSCNET-II
network. The following HAL commands load the driver and add its callback function to the servo thread:

SSCIl

loadrt motmod servo_period nsec=888888 ...
loadrt sscii
addf sscii.® servo-thread

Controller status pins:

Servo

sscii.0.ready (bit, out) — the controller is in sync with LinuxCNC 0.88ms servo thread. Before it come true other
pins are inactive

sscii.0.error-cnt (u32, out) — communication error count. Number of clocks when servo thread sync was absent.
If the value increases then the jitter is probably too large. Jitter tolerance is about 100 microseconds
sscii.0.phase (float, out) — offset of the servo thread call relative to the timing slot of controller's 0.88ms cycle, in
microseconds. Should not exceed +50us

THe driver support up to 6 connected servo amplifiers numbered <axis> 0 thru 5. Parameters:

Pins:

sscii.0.servo.<axis>.pos-scale (float, rw) — position scale factor, in length units per revolution. Default is 5,
which corresponds to 5, which is suitable for direct motor coupling to 5mm ball screw
sscii.0.servo.<axis>.vel-scale (bit, rw) — velocity scable factor. Default is 10, then vel-cmd is in rotation per
minute with 0.1 rpm resolution

sscii.0.servo.<axis>.online (bit, out) — the controller has detected and initialized <axis> servo amplifier
sscii.0.servo.<axis>.offline (bit, out) — inverted “online” pin output

sscii.0.servo.<axis>.ready (bit, out) — READY-ON (power relay is on)

sscii.0.servo.<axis>.enabled (bit, out) - SERVO-ON

sscii.0.servo.<axis>.warning (bit, out) — servo amplifier warning

sscii.0.servo.<axis>.alarm (bit, out) — servo amplifier alarm

sscii.0.servo.<axis>.alarm-code (u32, out) — servo amplifier alarm code (hex)
sscii.0.servo.<axis>.zero-speed (bit, out) — motor velocity is below zero speed threshold (param No.30)
sscii.0.servo.<axis>.in-position (bit, out) — position complete (threshold set in param No.20)

sscii.0.servo.<axis>.power (bit, in) — turn on amplifier power relay (READY-ON).
sscii.0.servo.<axis>.enable (bit, in) — enable servo (SERVO-ON)

sscii.0.servo.<axis>.pos-cmd (float, in) — commanded position

sscii.0.servo.<axis>.pos-fb (float, out) — motor feedback position

sscii.0.servo.<axis>.velocity-mode (bit, rw) — velocity control mode. Change is possible at zero speed only
sscii.0.servo.<axis>.vel-cmd (float, in) — commanded velocity

sscii.0.servo.<axis>.vel-fb (float, out) — motor velocity feedback

sscii.0.servo.<axis>.trq-fb (float, out) — motor torque feedback, percents from nominal motor torque
sscii.0.servo.<axis>.droop (s32, out) — droop pulse count. The difference between commanded and actual
position of servo motor

dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

e sscii.0.servo.<axis>.error-cnt (s32, out) — controller-amplifier feedback transfer error count. Errors may be due
to faulty connection of the SSCNET cables

sscii.0.servo.<axis>.limit-torque (bit, in) — turn on torque limiting
sscii.0.servo.<axis>.forward-torque (float, in) — forward rotation torque limit, percents
sscii.0.servo.<axis>.reverse-torque (float, in) — reverse rotation torque limit
sscii.0.servo.<axis>.torque-clamped (bit, out) — torque clamp indication

sscii.0.servo.<axis>.absolute (bit, out) — absolute position feedback is valid (param No.1)
e sscii.0.servo.<axis>.abs-pos-lost (bit, out) — absolute position is not valid

Encoder

An encoder input channel converts quadrature signals on Phase A, Phase B, Index Z into 32-bit up/down counter values.
The maximum count frequency is 20 MHz. Parameter:

e sscii.0.encoder.0.cpr (float, rw) — encoder resolution, counts per revolution. Sign defines rotation direction.
Default is minus 10000

Pins:
e sscii.0.encoder.<enc>.index-enable (bit, io) — reset counter on next index mark Z
sscii.0.encoder.<enc>.pos (float, out) — encoder counter divided by cpr parameter value. Signed fractional

number of revolutions.

The interface is intended for use with motion.spindle-index-enable and motion.spindle-revs.

GPIO

Digital input signals INO..IN11 connected to CN1. Pins:

e sscii.0.gpio.<n>.in (bit, out) — a value of digital input <n> 0 thru 11
e sscii.0.gpio.<n>.in-not (bit, out) — inverted

Digital output signals OUT0..OUT7 going to CN3:

e sscii.0.gpio.<n>.out (bit, in) — set output number <n> 0 thru 7

Absolute encoder support

All Mitsubishi J2 Super series motors feature absolute encoders. This allows to eliminate LinuxCNC homing operation on
each startup. As LinuxCNC 2.7.4 lacks support of absolute encoders a patch is provided. It adds pins to halui module:

e halui.joint.<n>.set-homed (bit, in) — set axis “homed” state to true for current offsets without actually
performing a homing operation

Upon startup a script is executed which inspects if servo amplifiers are in absolute mode and position data is valid. In that
case it sets corresponding axes to “homed”. Also the patch changes values saved into position.txt file from current
position pos_fb to motor_offset. TODO: change to preserve compatibility.

Added INI file parameters MAX_JOG_VELOCITY, MAX_AJOG_VELOCITY to differentiate maximum jogging velocity

from absolute maximum velocity that can be used in programs. AXIS Ul sliders “Jog Speed” and “Max Velocity” behave
consistent.

dmitry@yurtaev.com

mailto:dmitry@yurtaev.com

FPGA configuration and embedded processor firmware are stored in a 16 mbit FLASH memory chip. Memory is dividen
to 64 KBytes sectors. Sector 0 contains a bootloader, sectors 1-6 — backup configuration, 8-13 - primary configuration.
FLASH writing is done by running the nyxflash utility given a firmware image file name as an argument. Should be run
as root:

nyxflash nyx_fw_v@.12.bin

writing nyx_fw_v0.12.bin 340604 bytes to ©x80000
erasing sector #8 #9 #10 #11 #12 #13

writing sector #8 #9 #10 #11 #12 #13

programming successful

exiting monitor

Writing bootloader is done with BOOT name:

nyxflash BOOT

writing BOOT 64 bytes to 0x0
erasing sector #0

writing sector #0
programming successful
exiting monitor

Optional second argument specifies starting offset, in hex bytes. For example, writing a backup configuration is done
with:

nyxflash nyx_fw_v@.14.bin 10000

writing nyx_fw_ve@.12.bin 340604 bytes to 0x10000
erasing sector #1 #2 #3 #4 #5 #6

writing sector #1 #2 #3 #4 #5 #6

programming successful

exiting monitor

Giving ERASE as an argument erases a sector at given address:
nyxflash ERASE ©
erasing sector #0

exiting monitor

Caution! If the utility reports verification errors do not turn off the computer. Repeat the writing command instead. If the
bootloader or both primary and backup configurations are damaged then the board is rendered unusable without FPGA
JTAG programmer.

dmitry@yurtaev.com

10

mailto:dmitry@yurtaev.com

This protocol implementation is in no way associated with Mitsubishi Electric and based solely on reverse engineering.
Because of that and the variety of uses for this equipment, the user of and those responsible for applying this equipment
must satisfy themselves as to the acceptability of each application and the use of the equipment. The illustrations in this
manual are intended solely to illustrate the text of this manual. Because of the many variables and requirements
associated with any particular installation, the manufacturer cannot assume responsibility or liability for actual use based
upon the illustrative uses and applications. In no event will the manufacturer be responsible or liable for indirect or
consequential damages resulting from the use or application of this equipment. THE MANUFACTURER DISCLAIMS
ANY IMPLIED WARRANTY OR FITNESS FOR A PARTICULAR PURPOSE.

dmitry@yurtaev.com

11

mailto:dmitry@yurtaev.com

